
A Generalized Extended Kalman Filter
Implementation for the Robot Operating System

Thomas Moore
Sensor Processing and Networking Division

Charles River Analytics, Inc.
Cambridge, Massachusetts, USA

tmoore@cra.com

Daniel Stouch
Sensor Processing and Networking Division

Charles River Analytics, Inc.
Cambridge, Massachusetts, USA

dstouch@cra.com

Abstract—Accurate state estimation for a mobile robot often
requires the fusion of data from multiple sensors. Software that
performs sensor fusion should therefore support the inclusion of
a wide array of heterogeneous sensors. This paper presents a
software package, robot_localization, for the Robot Operating
System (ROS). The package currently contains an
implementation of an extended Kalman filter (EKF). It can
support an unlimited number of inputs from multiple sensor
types, and allows users to customize which sensor data fields are
fused with the current state estimate. In this work, we motivate
our design decisions, discuss implementation details, and provide
results from real-world tests.

Keywords—sensor fusion; extended Kalman filter; localization;
Robot Operating System

I. INTRODUCTION
A critical challenge for all mobile robots is the ability to

answer the question, “Where am I?” [1] The answer to this
question can be obtained through the robot’s sensors, which
can provide both proprioceptive and exteroceptive data.
However, sensors are imperfect, and their measurements are
prone to errors. By fusing the data from multiple sensors, we
can obtain an overall position estimate whose error is less than
would be possible by using a single sensor in isolation. It is
often the case that a greater amount of sensor input data will
produce more accurate position estimates. It is therefore critical
that any software that performs sensor fusion on a mobile robot
platform is able to take in any and all available data on the
platform. Additionally, the software should be easy to use and
highly customizable, thereby providing users with greater of
flexibility while allowing them to focus on higher-level
behaviors.

In this paper, we introduce our software package,
robot_localization, for the Robot Operating System (ROS) [2].
ROS is an open-source robotic framework that has been widely
adopted across academia, industry, and militaries around the
world. Our software addresses the sensor fusion needs of a
broad range of mobile robots and allows for rapid integration
with those platforms.

In Section II, we detail our motivation for the creation of
the robot_localization package. In Section III, we describe our
extended Kalman filter (EKF) [3] ROS node,
ekf_localization_node. Section IV details experiments that we

performed on a Pioneer 3 mobile robot. Section V provides a
summary discussion of the experiments, and Section VI
concludes with applications to other platforms and details plans
for extending both ekf_localization_node and the
robot_localization package.

II. MOTIVATION
The ROS community has developed and contributed a

wealth of software to facilitate robotic development and
practice, with over 2,000 packages available to date. While
other packages exist that perform state estimation, they are
often difficult to apply to new problems for a variety of
reasons:

• Limited sensor inputs. Robots are being equipped with
an increasing number of sensors, and existing ROS
packages require a lot of user effort to successfully
integrate the data from all of them.

• Limited to 2D estimation. For some unmanned ground
vehicles (UGVs) operating in planar indoor
environments, ROS packages that estimate the vehicle’s
state in 2D are sufficient for the intended application.
However, these packages are insufficient for estimating
the state of platforms that operate in 3D, such as
unmanned aerial vehicles (UAVs), unmanned
underwater vehicles (UUVs), and UGVs operating
outdoors.

• Limited ROS message support. Sensor data in ROS
often originates from hardware driver packages over
which the user has no control. If a state estimation node
does not support a given message type, the user must
either modify the driver’s source or create an
intermediary node to copy the message data into a
supported message type.

• Limited control over sensor data. Accurate state
estimates often require only a subset of the available
sensor messages because of faulty sensors or sensor
drivers that fail to properly fill out covariance values.
This requires users to modify the data messages, e.g.,
by artificially inflating covariances.

We developed our robot_localization package from the
ground up to overcome these limitations and be as general-

purpose as possible. It performs state estimation in 3D space,
allows for an unlimited number of sensors, supports multiple
standard ROS message types, and allows per-sensor control of
which message fields are fused with the state estimate.

III. EXTENDED KALMAN FILTER NODE
We developed ekf_localization_node, an EKF

implementation, as the first component of robot_localization.
The robot_localization package will eventually contain
multiple executables (in ROS nomenclature, nodes) to perform
state estimation. These nodes will share the desirable properties
described in Section II, but will differ in their mathematical
approaches to state estimation. In this section, we describe the
implementation details for ekf_localization_node.

A. Extended Kalman Filter Algorithm
The EKF formulation and algorithm are well-known [3, 4,

5]. We detail them here to convey important implementation
details. Our goal is to estimate the full 3D (6DOF) pose and
velocity of a mobile robot over time. The process can be
described as a nonlinear dynamic system, with

 𝒙𝑘 = 𝑓(𝒙𝑘−1) + 𝒘𝑘−1 , (1)

where 𝒙𝑘 is the robot’s system state (i.e., 3D pose) at time
𝑘, f is a nonlinear state transition function, and 𝒘𝑘−1 is the
process noise, which is assumed to be normally distributed.
Our 12-dimensional state vector, 𝒙, comprises the vehicle’s 3D
pose, 3D orientation, and their respective velocities. Rotational
values are expressed as Euler angles. Additionally, we receive
measurements of the form

 𝒛𝑘 = ℎ(𝒙𝑘) + 𝒗𝑘 , (2)

where 𝒛𝑘 is the measurement at time 𝑘 , ℎ is a nonlinear
sensor model that maps the state into measurement space, and
𝒗𝑘 is the normally distributed measurement noise.

The first stage in the algorithm, shown as equations (3) and
(4), is to carry out a prediction step that projects the current
state estimate and error covariance forward in time:

 𝒙�𝑘 = 𝑓(𝒙𝑘−1). (3)

 𝑷�𝒌 = 𝑭𝑷𝑘−1𝑭𝑇 + 𝑸. (4)

For our application, 𝑓 is a standard 3D kinematic model
derived from Newtonian mechanics. The estimate error
covariance, 𝑷, is projected via 𝑭, the Jacobian of 𝑓, and then
perturbed by 𝑸, the process noise covariance.

We then carry out a correction step in equations (5) through
(7):

 𝑲 = 𝑷�𝑘𝑯𝑇�𝑯𝑷�𝑘𝑯𝑇 + 𝑹�−1. (5)

 𝒙𝒌 = 𝒙�𝑘 + 𝑲(𝒛 − 𝑯𝒙�𝒌). (6)

 𝑷𝑘 = (𝑰 − 𝑲𝑲)𝑷�𝑘(𝑰 − 𝑲𝑲)𝑇 + 𝑲𝑲𝑲𝑇. (7)

We calculate the Kalman gain using our observation
matrix, 𝑯, our measurement covariance, 𝑹, and 𝑷�𝑘. We use the
gain to update the state vector and covariance matrix. We
employ the Joseph form covariance update equation [6] to
promote filter stability by ensuring that 𝑷𝑘 remains positive
semi-definite.

The standard EKF formulation specifies that 𝑯 should be a
Jacobian matrix of the observation model function ℎ . To
support a broad array of sensors, we make the assumption that
each sensor produces measurements of the state variables we
are estimating. As such, 𝑯 is simply the identity matrix. A core
feature of ekf_localization_node is that it allows for partial
updates of the state vector, which is also a requirement of any
future state estimation nodes that are added to
robot_localization. This is critical for taking in sensor data that
does not measure every variable in the state vector, which is
nearly always the case. In practice, this can be accomplished
through 𝑯. Specifically, when measuring only 𝑚 variables, 𝑯
becomes an 𝑚 by 12 matrix of rank 𝑚, with its only nonzero
values (in this case, ones) existing in the columns of the
measured variables.

Because the process noise covariance, 𝑸, can be difficult to
tune for a given application [7], ekf_localization_node exposes
this matrix as a parameter to users, allowing for an additional
level of customization.

IV. EXPERIMENTS
We designed and executed two experiments to evaluate the

performance of ekf_localization_node. Our test platform is a
MobileRobots Pioneer 3 (Fig. 1). The robot is equipped with
wheel encoders that provide raw odometry estimation.
Additionally, we have mounted a sensor suite on the platform
with two Microstrain 3DM-GX2 IMUs and two Garmin GPS
18x units. The sensors are mounted on a custom rig that aids in
magnetic interference reduction for the IMUs and increases
signal quality for the GPS units. We have configured
ekf_localization_node to take in roll, pitch, yaw, and their
respective velocities from each of the IMUs, and x and yaw
velocity from the wheel encoders. For each GPS, we define a
transform that converts the robot’s world frame coordinates
(i.e., the frame with its origin at the robot’s start position) to
the GPS’s UTM coordinates, as

 𝑻 =

⎣
⎢
⎢
⎡𝑐θ𝑐ψ 𝑐ψ𝑠Φ𝑠θ − 𝑐Φ𝑠ψ
𝑐θ𝑠ψ 𝑐Φ𝑐ψ + 𝑠Φ𝑠θ𝑠ψ

𝑐Φ𝑐ψ𝑠θ + 𝑠θ𝑠ψ 𝑥UTM0

−𝑐ψ𝑠Φ + 𝑐Φ𝑠θ𝑠ψ 𝑦UTM0

−𝑠θ 𝑐θ𝑠Φ
0 0

 𝑐Φ𝑠θ 𝑧UTM0

 0 1 ⎦
⎥
⎥
⎤
 , (8)

where Φ, θ, and ψ are the vehicle’s initial UTM-frame roll,
pitch, and yaw, respectively. c and s designate the cosine and
sine functions, respectively, and xUTM0

, yUTM0
, and zUTM0

 are the
UTM coordinates of the first reported GPS position. At any
subsequent time t, we transform the GPS measurement into the
robot’s world coordinate frame, odom, by

 �

𝑥odom
𝑦odom
𝑧odom

1
� = 𝑻−1 �

𝑥UTM𝑡
𝑦UTM𝑡
𝑧UTM𝑡

1

�. (9)

We then configure ekf_localization_node to fuse the
transformed position with the state estimate. This process is
carried out for each GPS independently.

We collected raw sensor data from the platform in the
parking lot of the authors’ building. Its path is depicted in Fig.
2. The experiment environment measures approximately 110
meters from the robot’s origin to the most distant point
traveled. The robot was joystick controlled and driven so that
its final position was exactly where it started. The collection
lasted approximately 777 seconds. The data was then played
back through ROS’s rosbag utility, allowing us to run multiple
experiments on the same collected dataset1. While the state
was estimated in 3D space (i.e., taking into account roll and
pitch and incorporating the GPS altitude measurements), we
report our results in 2D, as the nearly planar environment made
the reporting of 3D information superfluous (Section VI
provides an example of ekf_localization_node applied to a 3D
state estimation problem for a UAV).

A. Loop Closure Accuracy
For our first experiment, we are interested in the distance

between the robot’s start and end positions, as reported by
ekf_localization_node. Ideally, we would like the end position
(x, y) values to be as close to the origin at (0, 0) as possible.
We repeat the experiment in multiple ekf_localization_node
sensor configurations: (1) dead reckoning via the platform’s
odometry, (2) fused odometry with a single IMU, (3) fused
odometry with two IMUs; (4) fused odometry with two IMUs
and a single GPS, and (5) fused odometry with two IMUs and
two GPS units.

As previously mentioned, ekf_localization_node affords the
ability to configure which variables from each of its sensors are
actually fused in the final state estimate. We list the sensor
configurations in Table I. Note that for these experiments, we
hold each configuration constant. In reality, however, some
configurations would likely change depending on the sensor
package. See Section V for further discussion.

The results are listed in Table II. For each sensor
configuration, the loop closure error is reported for x and y
position. Our experiment design is such that this error is simply
ekf_localization_node’s last reported state estimate before the
bag file playback stops. We also report the filter’s last
estimated standard deviation values for x and y. This gives an
indication of how closely the EKF’s error matches reality.
Statistics are reported in the robot’s world coordinate frame (in
keeping with ROS standards, we denote this frame odom). The
robot’s starting orientation and origin are depicted in Fig. 2.

We also present graphical depictions of the results in Fig. 2
through Fig 7. In Fig. 2, we give the robot’s path as an average
of the GPS tracks. This serves only as a visual guide and is not
considered to be ground truth. In Fig. 3 through Fig. 7, we

1 The bag file generated from this experiment is available at

http://www.cra.com/robot_localization_ias13.zip

overlay the estimated paths on top of this visualization for
reference purposes. It also showcases how the configurations in
rows four and five of Table II (corresponding to Fig. 6 and Fig.
7) improve upon the average GPS track.

The results of the experiment largely follow intuition. Dead
reckoning yields the worst performance, with the robot’s final
reported position being more than 174 meters from the origin
(Fig. 3). Our Pioneer’s wheel encoders are biased in such a
way that straight lines get reported as mild right turns, leading
to a highly inaccurate position estimate. Including one IMU

Fig. 1: Our test platform is a Pioneer 3 with a custom sensor mounting rack. It

has two IMUs and two GPS units.

TABLE I. SENSOR CONFIGURATIONS

Sensor
Configuration Vector
0 = false, 1 = true

x y z Φ θ ψ x' y' z' Φ' θ' ψ'

Odometry 0 0 0 0 0 0 1 1 1 0 0 1

IMU 1 0 0 0 1 1 1 0 0 0 1 1 1

IMU 2 0 0 0 1 1 1 0 0 0 1 1 1

GPS 1 1 1 1 0 0 0 0 0 0 0 0 0

GPS 2 1 1 1 0 0 0 0 0 0 0 0 0

TABLE II. ERRORS FOR FIVE DIFFERENT SENSOR CONFIGURATIONS

Sensor Set Loop Closure
Error x, y (m)

Estimate Std.
Dev.

x, y (m)

Odometry (dead reckoning) 69.65, 160.33 593.09, 359.08

Odometry + one IMU 10.23, 47.09 5.25, 5.25

Odometry + two IMUs* 12.90, 40.72 5.23, 5.24

Odometry + two IMUs* + one GPS 1.21, 0.26 0.64, 0.40

Odometry + two IMUs* + two GPSs 0.79, 0.58 0.54, 0.34
* IMU 2 failed after approximately 45% of the collection

Fig. 2: The robot's path as a mean of the two raw GPS paths is shown in red. Its

world coordinate frame is shown in green.

Fig. 3: Output of ekf_localization_node (yellow) when fusing only raw

odometry data.

Fig. 4: Output of ekf_localization_node (cyan) when fusing data from

odometry and a single IMU.

Fig. 5: Output of ekf_localization_node (orange) when fusing data from

odometry and two IMUs. Note that the second IMU stopped reporting data
midway through the run.

Fig. 6: Output of ekf_localization_node (blue) when fusing data from

odometry, two IMUs, and one GPS.

Fig. 7: Output of ekf_localization_node (green) when fusing data from

odometry, two IMUs, and two GPS units.

aids in correcting this problem, owing to the order-of-
magnitude improvement in the IMU’s yaw velocity error over
that of the Pioneer’s odometry, as well as the fusion of absolute
orientation (Fig. 4). However, the collection area contains
many areas with strong electromagnetic interference, resulting
in inaccurate headings being reported by the magnetometer.
The addition of a second IMU improves the final position error
only slightly, because it is subject to the same interference, and
because it actually stopped reporting data halfway through the
collection (Fig. 5). While normally a cause to repeat the
experiment, this sensor failure serves as an example of why the
fusion of multiple sensors is so powerful, as the system can
more gracefully cope with faulty or infrequent sensor data.

We can further refine our estimate through the inclusion of
a single GPS (Fig. 6). This aids in constraining the effects of
both the odometry’s inaccurate linear velocity estimates and
eliminates the effect of the poor heading estimate resulting
from IMU interference. Adding a second GPS provides a less
drastic improvement in the final position error, but showcases
the ability of ekf_localization_node to successfully fuse data
from a large number of sensor inputs (Fig. 7).

B. Infrequent GPS
Many robots receive infrequent absolute position

measurements and must maintain a state estimate when these
signals are absent. For our second experiment, we want to
evaluate the performance of the filter when GPS signals arrive
infrequently. We run the experiment with the same sensor
configuration as in row four of Table II, i.e., with odometry,
both IMUs, and one GPS. However, we filter the collection log
file such that GPS data is only available once every 120
seconds. Our aim is to determine how gracefully the filter
handles the fusion of sensor data that varies greatly from its
current state estimate.

The results are shown in Fig. 8. The locations at which GPS
fixes occur are displayed on the map, and result in noticeable
instantaneous position changes. These jumps clearly pull the
state estimate towards the GPS track, but the Kalman gain
gives some weight to the current state estimate, resulting in the
new position being in between the current state and
measurement. Despite the large difference between state
estimate and measurement, the filter’s covariance matrix
retains its stability, and the x and y variance values decrease
considerably. At the end of the run, the vehicle’s loop closure
(x, y) absolute error is (12.06, 0.52) meters.

V. DISCUSSION
Referring again to the first row of Table II (dead

reckoning), it is clear that the estimate variance for x and y was
very large. For this particular test, the condition number of the
covariance matrix grew rapidly, indicating filter instability.
This is due in part to the sensor’s configuration. The strong
correlation between yaw and x and y position means that,
without an absolute measurement of yaw or (x, y), the errors on
these values will grow rapidly. Clearly, this problem is solved
by the inclusion of IMUs, which provide absolute yaw
measurements.

The estimated standard deviations of the (x, y) positions for
rows two and three in Table II are much smaller than the true

position estimation errors. This is partially due to both the
Pioneer odometry and IMU data being noisier than its
covariance values reported. We also did not tune the process
noise covariance matrix, 𝑸 [7].

It is worth noting that despite the fact that the odometry
only truly measures x and yaw velocity, we can infer more
information. The platform is not going to obtain any
instantaneous z or y velocity due to platform constraints, i.e., it
cannot fly and is nonholonomic. We can therefore fuse the zero
values in those data fields with our estimate, providing that the
measurement’s covariances are set appropriately (Table I). In
general, if the measurement of a quantity is implied through
kinematic constraints, it is best to treat that quantity as a
measured value.

Although our experiments utilized only proprioceptive
sensors, the design of our software is such that inputs from
exteroceptive sensors such as laser scanners or cameras could
be used as well, provided that they produce supported ROS
message types. For example, the iterative closest point (ICP)
algorithm [8] could be used with data from an RGBD sensor

(a)

(b)

 Fig. 8: (a) Output of ekf_localization_node (white) when fusing odometry,
IMU, and infrequently reported GPS data. GPS fixes occur at the green circles.

(b) x and y position variances for the same run. Green circles denote the
reception of GPS data.

such as the Microsoft Kinect [9] to generate an additional
source of odometry [10].

While the number of sensor permutations possible for this
experiment was not large, the sensor data customization
parameters for ekf_localization_node (and future nodes in
robot_localization) can yield a much larger set of possible
configurations. For example, one of our IMUs is known to
have a faulty gyroscope. In that case, we can use that IMU to
report only orientation and use the second IMU to give us both
orientation and orientation velocity. This kind of fine-grained
control is useful for dealing with known faulty sensors and for
troubleshooting.

VI. CONCLUSION AND FUTURE WORK
While this work focused on a robot operating in a near-

planar environment, we have also successfully applied
ekf_localization_node across multiple projects involving both
ground and aerial robots [11]. In particular, we have integrated
the software with a Parrot AR.Drone 2.0 quadcopter via the
ardrone_autonomy ROS package [12] (Fig. 10). The drone has
camera-based velocity sensing, camera- and barometry-based
altitude sensing, an IMU, and GPS.

We plan to improve both ekf_localization_node and
robot_localization in a number of ways:

• Covariance override. Some ROS nodes for specific
robot platforms or sensors assign arbitrary values for
certain covariance matrix entries so as to signify that the
quantity in question is not measured or is not
trustworthy. However, as discussed in Section V, users
may wish to incorporate sensor data for values that
aren’t actually measured by the sensor. Currently, the
sensor data preprocessing logic, common to all nodes in
robot_localization, assigns a small variance value to
any sensor that is fused with a variance of zero. While
this allows the measurement to be fused without
breaking the filter, the values should be
parameterizable.

• Support for linear acceleration. We do not currently
fuse linear acceleration in our state estimate or account
for it in our kinematic model. Doing so will further
increase filter accuracy.

• Additional state estimation nodes. The
robot_localization package is meant to contain multiple
nodes for carrying out state estimation. We plan to add
new nodes in the future, such as an unscented Kalman
filter [13] node and a particle filter [14] node.

In this paper, we introduced a generalized extended Kalman
filter node, ekf_localization_node, for our robot_localization
ROS package. Its support for multiple sensors and high level of
customizability make it well suited to the problem of state
estimation for a variety of robot platforms. It is the authors’
hope that robot_localization will benefit from the feedback and
contributions of the ROS community.

REFERENCES
[1] J.J. Leonard and H.F. Durrant-Whyte, "Mobile robot localization by

tracking geometric beacons," Robotics and Automation, IEEE
Transactions on vol. 7, no. 3, pp. 376-382, 1991.

[2] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R.
Wheeler and A.Y. Ng, "ROS: an open-source robot operating system,"
ICRA workshop on open source software vol. 3, no. 3.2, 2009.

[3] G.L. Smith, S.F. Schmidt and L.A. McGee, "Application of statistical
filter theory to the optimal estimation of position and velocity on board a
circumlunar vehicle," 1962.

[4] R.E. Kalman, "A New Approach to Linear Filtering and Prediction
Problems," Transactions of the ASME pp. 35-45, 1960.

[5] G. Welch and G. Bishop, "An introduction to the Kalman filter," 1995.
[6] G.J. Bierman and C.L. Thornton, "Numerical comparison of Kalman

filter algorithms: Orbit determination case study," Automatica vol. 13,
no. 1, pp. 23-35, 1977.

[7] B.J. Odelson, M.R. Rajamani and J.B. Rawlings, "A new autocovariance
least-squares method for estimating noise covariances," Automatica vol.
42, no. 2, pp. 303-308, 2006.

[8] P. Besl and N. McKay, "Method for registration of 3-D shapes," IEEE
PAMI, 14, pp. 239-256, 1992.

[9] Microsoft Corporation, “Kinect for Windows,”.
http://www.microsoft.com/en-us/kinectforwindows/, 2014

[10] A. Milella, and R. Siegwart, "Stereo-based ego-motion estimation using
pixel tracking and iterative closest point," Computer Vision Systems,
2006 ICVS'06. IEEE International Conference on., 2006.

[11] D. Stouch, A. Ost, T. Moore and C. Monnier, "Robust Tactical
Communications Relay using Visual Object Detection on an
Autonomous Mobile Robot," International Advanced Robotics
Programme's 7th International Workshop on Robotics for Risky
Environments - Extreme Robotics (IARP RISE-ER 2013) 2013.

[12] M. Monajjemi, "Autonomylab/ardrone autonomy. github. com,"
AutonomyLab/ardrone autonomy 2013.

[13] S.J. Julier and J. Uhlmann, "A New Extension of the Kalman Filter to
Nonlinear Systems," AeroSense, Simulation and Controls, Multi Sensor
Fusion, Tracking and Resource Management II 1997.

[14] S. Thrun, D. Fox, W. Burgard and F. Dellaert, "Robust Monte Carlo
Localization for Mobile Robots," Artificial Intelligence vol. 128, no. 1-2,
pp. 99-141, 2000.

(a)

(b)

 Fig. 9: (a) Parrot AR.Drone 2.0 quadcopter, (b) 3D path flown by the
AR.Drone and estsimated by ekf_localization_node.

	I. Introduction
	II. Motivation
	III. Extended Kalman Filter Node
	A. Extended Kalman Filter Algorithm

	IV. Experiments
	A. Loop Closure Accuracy
	B. Infrequent GPS

	/
	/
	/
	/
	/
	/
	V. Discussion
	VI. Conclusion and Future Work
	References

